ÜBER DAS REAKTIONSVERHALTEN VON (GERMYL- UND STANNYL-IMINO)PHOSPHORANEN GEGENÜBER METALLALKYLEN

WERNER WOLFSBERGER UND HUBERT SCHMIDBAUR Institut für Anorganische Chemie der Universität Würzburg (Deutschland) (Eingegangen den 23. Januar 1969)

SUMMARY

[(Trialkylgermyl)imino]trialkylphosphoranes (I), (II)—like their silicon analogues—spontaneously form stable 1/1 addition compounds with trimethylaluminium, -gallium and -indium, of the type (III)–(VIII). Analytical and spectroscopic data ensure the composition and structures proposed for these products. The spectra provide information regarding relative acceptor and donor strengths of the components.

The corresponding reactions of the [(trialkylstannyl)imino]trialkylphosphoranes (X), (XI) lead to heterolytic cleavage of the Sn-N bonds under mild conditions already, tetraalkylstannane and dimeric [(dimethylmetal)imino]trialkylphosphoranes, (XIII)-(XVIII), being formed. This is new evidence for the lability of Sn-N bonds as compared with Ge-N bonds towards electrophilic reagents.

ZUSAMMENFASSUNG

[(Trialkylgermyl)imino]trialkylphosphorane (I), (II) addieren (wie ihre Silicium-analogen) spontan Trimethylaluminium, -gallium und -indium unter Bildung stabiler 1/1-Addukte (III)--(VIII). Analytische und spektroskopische Untersuchungen sichern deren Zusammensetzung und Konstitution. Aus den Spektren können Aussagen über relative Acceptor- und Donatorstärken der Komponenten erarbeitet werden.

Bei entsprechenden Umsetzungen der [(Trimethylstannyl)imino]trialkylphosphorane tritt schon unter milden Bedingungen eine heterolytische Spaltung der Sn-N-Bindung ein. Neben Tetramethylstannan entstehen dabei die koordinationsdimeren [(Dimethylmetall)imino]trialkylphosphorane (XIII)-(XVIII). Diese Abstufung des Reaktionsverhaltens verdeutlicht die (gegenüber Ge-N) drastisch reduzierte Stabilität der Sn-N-Bindung.

EINLEITUNG

*N-Silyl*ierte Iminophosphorane bilden mit Metallalkylen des Aluminiums, Galliums und Indiums stabile 1/1-Komplexe, die eine beträchtliche thermische Stabilität aufzuweisen haben¹. Sie zersetzen sich oft erst ab etwa 300°. Ihr charakteristisches Strukturprinzip ist die (vermutlich ebene) Anordnung der drei Elemente P, Si, Al (Ga, In) um das zentrale Stickstoffatom, z.B.:

$$R_{3}AI^{-N^{+}}PR_{3}$$

Durch Variation der Liganden R lässt sich die chemische und thermische Beständigkeit dieser Verbindungen nach verschiedenen Richtungen hin beeinflussen². In Sonderfällen kann dann die thermische Zersetzung so gelenkt werden, dass dabei neue heterocyclische Ringsysteme gebildet werden^{2,3}:

Diese Beispiele zeigen, dass die Reaktivität der Liganden und der Element-Stickstoff-Bindungen für das Reaktionsverhalten der Verbindungen von grosser Bedeutung sind. Aus diesem Grund wurden die Untersuchungen jetzt auf die Chemie entsprechender *Germanium*- und Zinn-analogen ausgedehnt. Die relativ zu Si-N deutlich reduzierte Ge(Sn)-N-Bindungsenergie⁴⁻⁶ liess starke Veränderungen in den Eigenschaften einschlägiger Verbindungen erwarten.

METALLALKYL-KOMPLEXE DER (GERMYLIMINO)PHOSPHORANE

Darstellung

Sowohl [(Trimethylgermyl)imino]trimethylphosphoran (I)⁷ als auch das entsprechende *P*-Triäthyl-homologe⁷ (II) reagieren mit den Trimethylmetall-ätheraten von Aluminium, Gallium und Indium spontan unter Wärmeentwicklung:

Dabei wird der vorher koordinativ gebundene Äther in Freiheit gesetzt. Bei stöchiometrischen 1/1-Ansätzen entstehen in hohen Ausbeuten die Produkte (III)–(VIII), die durch Elementaranalysen, Molekulargewichte und IR- sowie NMR-Spektren in ihrer Zusammensetzung und Struktur gesichert sind.

Eigenschaften

Die Verbindungen (III)-(VIII), die bereits bei ihrer Darstellung in hoher Reinheit anfallen, sind bei Normalbedingungen wohlkristalline farblose Feststoffe mit definiertem Festpunkt. Wie ihre Siliciumanalogen¹ sind sie ohne Zersetzung destillierbar bzw. sublimierbar. Die Thermolyse der Substanzen bei Temperaturen von weit über 200° führt in unübersichtlicher Weise zu einer totalen Zerstörung der Verbindungen. Eine selektive Spaltung der Ge-N-Bindungen (unter Abspaltung von Germaniumtetramethyl) wird nicht beobachtet. Die Schmelz- und die Siedepunkte sind aus der Tabelle 1 ersichtlich. In Benzol, in dem sich (III)-(VIII) wie in fast allen inerten organischen Lösungsmitteln gut lösen, zeigen sie nach kryoskopischen Molekulargewichtsbestimmungen *einfaches* Molgewicht (Tabelle 10). (III)-(VIII) sind stark feuchtigkeits- und luftempfindlich, wobei die Geschwindigkeit ihrer Zersetzung von (III) nach (V) bzw. von (VI) nach (VIII) etwas abnimmt. Unter absolutem Luftund Wasserausschluss jedoch sind alle Substanzen bei Normalbedingungen gut haltbar.

TABELLE 1

SCHMELZ- UND SIEDEPUNKTE DER VERBINDUNGEN (III)-(VIII)

Verb.	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
Schmp.	75-77	41–43	46-48	182–183	112–113	149–150
Sdp./mm	112-113/0.2	87–89/0.2	93-95/0.2	150/0.2ª	110/0.2ª	140/0.2°

^a Sublimiert.

Ebenso wie an ihre Siliciumanalogen, die keine Komplexe des Typs (A) bilden¹, lässt sich auch an (III)–(VIII) kein weiteres Trimethylmetall-Molekül unter Ausbildung von Addukten (B) anlagern. Hier wie bei (A) dürfte wohl das gehäufte Auftreten von Formalladungen das primäre Hindernis für die Ausbildung stabiler 1/2-Komplexe sein⁸. Die Existenz von Verbindungen wie Tetrakis(trimethylsilyl)methan zeigt die untergeordnete Bedeutung sterischer Effekte⁹.

$$\begin{array}{cccc} R_{3}Si_{+} & MR_{3} & R_{3}Ge_{+} & MR_{3} \\ - & N_{+} & - & N_{+} \\ R_{3}M & PR_{3} & R_{3}M & PR_{3} \\ (A) & (B) \end{array}$$

¹H-NMR-Spektren

Zahl, Multiplizität und Flächenverhältnis der Signale in den ¹H-NMR-Spektren der Verbindungen bestätigen das Vorliegen von 1/1-Addukten, wie es oben formuliert worden war, (III)–(VIII). Die einzelnen Daten sind in den Tabellen 2 und 3 zusammengestellt, in denen die einzelnen Koordinationsverbindungen jeweils dem

TABEI	JLE 2										
NMR-	DATEN DER VERBII	NDUNGEN $(I)^7$.	anu (V)-(III)	(IX) ¹¹							
Verb.	δ[CH ₃ (Ge)]	δ[CH ₃ (Si)]	δ[CH ₃ (P)]	δ[CH ₃ (M)]	J(¹ HC ³¹ P)	J(¹ H ¹ ³ CP)	(9DJc1H1)/	J(¹ H ¹³ CSi)	J(¹ H ¹³ CM)	Integra Ber.	lverhältnis ^a Gef.
	8.3 - 28.8 - 25.0		- 80.5	64.1 42.0	12.5 12.7 12.7	128.5	124.5 126.0		109.6	1/1 1/1/1 1/1/1	1/1.03 1.01/1/1 0.97/1/1.02
(X) (X)	21.6 23.5	-7.5	rt6 126 -	38.8	12.7		125.4	118.0		1/1/1	10.1/1/10.1
^a Sich	e Tabelle 3 unten										
TARF	1 1 1										

W. WOLFSBI	ERGE	er, f	I. SCHMIDB	AUR
	iåltnis ^a	Gef.	1.71/1 1.72/1/1 1.72/1/1.01 1.63/1/0.96	

Ber.

1.67/1 1.67/1/1 1.67/1/1 1.67/1/1

110,0

124.5 126.0

10.2 11.4 11.2 11.0

16.0 17.85 17.25 17.15

64.3 42.1 38.5

- 110.5 - 108.5

--90.5 --116.0

--64.0 --67.0 --66.0 --65.5

-8.3 -28.7 -23.9 -23.9

(III) (11)7

 $J({}^{1}\mathrm{H}{}^{1}{}^{3}\mathrm{CGe}) = J({}^{1}\mathrm{H}{}^{1}{}^{3}\mathrm{CM})$ Integralverhåltnis^a

J(¹HC³¹P)

J(¹HCC³¹P)

δ[CH₃(M)]

δ[CH₂(P)]

δ[CH₃(P)]

δ[CH₃(Ge)]

Verb.

NMR-DATEN DER VERBINDUNGEN (II)⁷ UND (VI)-(VIII)

^a Verhältnis der Fläche des (CH₃)₃P- oder (C₂H₅)₃P-Dubletts zu der des (CH₃)₃Ge-Singuletts, zu der des Trialkylmetall (III)-Signals.

44

entsprechenden freien Iminophosphoran⁷ gegenübergestellt sind. Eine Diskussion der Werte der chemischen Verschiebung und der Kopplungskonstanten bringt im Vergleich zu den früher gewonnenen Erkentnissen¹ keine wesentlichen neuen Aspekte. Lediglich die Daten des Isosterenpaares (III) und (IX)^{10,11} sollen hinsichtlich ihrer Isosteriebeziehung¹² diskutiert werden.

$$\begin{array}{ccc} Ge(CH_3)_3 & Ge(CH_3)_3 \\ (CH_3)_3 \stackrel{+}{P} \stackrel{-}{\overset{N}{\longrightarrow}} \stackrel{-}{Al}(CH_3)_3 & (CH_3)_3 Si \stackrel{-}{\overset{N}{\longrightarrow}} Si(CH_3)_3 \\ (III) & (IX) \end{array}$$

Es zeigt sich, dass die chemische Verschiebung δ [CH₃(Ge)] und die Kopplungskonstante $J({}^{1}H^{-13}CGe)$ sehr ähnliche Werte aufweisen (Tabelle 2), die auf einen sehr ähnlichen Bindungszustand der (CH₃)₃Ge-N-Gruppierung in beiden Molekülen hindeuten. Gleiches gilt für die arithmetischen Mittelwerte der chemischen Verschiebung δ und der Kopplungskonstanten $J({}^{1}H^{13}C)$ für die in den zu vergleichenden Verbindungen jeweils vorliegenden drei (CH₃)₃M-gruppierungen (vgl. dazu auch Ref. 1 und 13). Dies verdeutlicht die Tragweite der isoelektronischen Beziehung¹².

TABELLE 4

IR-SPEKTREN DER VERBINDUNGEN	(I)	UND	(III)–	(V)) (IN cm ⁻	1)
------------------------------	-----	-----	--------	-----	-----------------------	----

(I)	(III)	(IV)	(V)	Zuordnung
1303 st	1314 st	1311 st	1310 st	δ(CH, P)
1286 st	1299 sst	1296 sst	1294 sst	U(CII31)
1238 st	1249 Sch	1249 Sch	1247 Sch	S(CH.Ge)
	1240 st	1238 st	1238 st	0(011300)
	1175 sst	1179 sst	1139 st	$\delta(CH_3M)$
1195 sst	1061 sst	1077 sst	1090 sst	v(P=N)
947 Sch	043 cct	040 cet	030 cct	
929 sst	943 551	940 SST	939 221	$p_1(CH_3P)$
851 m	883 st	872 st	872 st	
842 st	860 st	856 st	854 st	$\rho_2(CH_3P)$
812 sst	824 sst	827 sst	824 sst	
	798 Sch	796 m	796 Sch	$\rho_1(CH_3Ge)$
746 ct	766 Sch	760 Sch	765 Sch	
740 51	752 st	745 Sch	748 st	$\rho_2(CH_3Ge)$
73'1 m	740 m		734 m	
712 st				$v_{\rm er}(PC_3)$
678 m		680 st		$v_{1}(PC_{1})$
	CDC	735 sst	696 Sch	(011.).()
	080 SSI	720 Sch	676 sst	$\rho(CH_3M)$
507	611 at	620 Sch	(10	(0-0)
367 St	011 St	610 sst	610 sst	$v_{as}(GeC_3)$
566 st	592 Sch	594 Sch	595 Sch	$v_{1}(GeC_{3})$
	561 Sch	568 m	570 m	3(5)
	572 st	531 sst	465 sst	v(MC ₃)
		504 st	460 Sch	(3)
537 m				v(Ge-N)
	520 st			()
		468 s		

IR-Spektren

Die Zuordnung der Banden der IR-Spektren der Verbindungen (III)–(VIII) konnte mit Hilfe einer grossen Zahl von Vergleichsspektren im Bereich von 1400–400 cm⁻¹ relativ sicher durchgeführt werden. Das Ergebnis ist zusammen mit der Lage und Intensität der einzelnen Banden aus den Tabellen 4 und 5 zu ersehen. Die Zuordnung wurde auch dadurch erleichtert, dass die Deformations- und Pendelschwingungen der CH₃-Gruppen jeweils sehr lagekonstant auftreten. Von den drei zu erwartenden Stickstoff-Element-Valenzschwingungen konnte allerdings nur v(P=N)eindeutig ausgesondert werden, so dass sich IR-spektroskopisch kein Vergleich zwischen dem Isosterenpaar (III) und (IX) ziehen liess.

Ein Vergleich der IR-Spektren von (III)-(VIII) mit denen der zugehörigen freien Iminophosphorane (I) und (II) zeigt klar die starke Donator-Acceptor-Bezie-

TABELLE 5

(II)	(VI)	(VII)	(VIII)	Zuordnung
1282 Sch	1276 m	1276 m	1275 m	δ(CH_P)
1268 st	1262 m	1262 m	1262 m	0(01121)
1238 sst	1249 m	1249 m	1249 m	S(CH.Ge)
1255 Sch	1238 st	1237 st	1238 st	0(011300)
	1169 st	1175 st	1138 st	$\delta(CH_3M)$
1210 sst	1055 sst	1066 sst	1089 sst	v(P=N)
1040 m	1045 Sch	1050 Sch	1050 st	
1021 m	1033 Sch	1037 Sch	1040 Sch	
1008 Sch	1025 Sch	1027 st	1027 st	v(C-C)
993 Sch	1011 Sch	1012 Sch	1013 Sch	
	987 m	988 m	1005 Sch	
			987 m J	
814 sst	825 sst	829 sst	824 sst	o (CH_Ge)
771 st	994 sst	791 sst	784 sst	<i>p</i> ₁ (en30c)
758 st	769 st	768 st	764 st	
743 m	742 st	742 m	742 st	P2(CH3CE)
715 m	720 st	722 st	714 st	$v_{as}(PC_3)$
706 m				
676 s			681 st	
	686 sst	722 st	670 Sch	ρ(CH₃M)
660 s		673 Sch	616 ct	
641 s	656 st	652 st	040 31	
			602 sst	
588 st	614 st	505 ct	592 Sch	
564 st	599 Sch	797.51	581 Sch 🕻	N(OEC3)
			540 Sch 🕽	
		570 m	-	
		536 st		
	570 st	516 et	464 sst	
		500 st	431 Sch	$v(MC_3)$
		200 21	420 Sch	
514 s				v(Ge-N)
	552 m			
	524 st			
	431 s	430 m		

IR-SPEKTREN DER VERBINDUNGEN (II) UND (VI)-(VIII) (IN cm⁻¹)

hung in den Komplexen und die grössere Acceptorstärke der Aluminiumtrialkyle relativ zu der der Gallium- und Indiumtrialkyle^{1,14,15}. Die Verschiebung der Phosphor-Stickstoff-Valenzschwingungsbande der Iminophosphorane (I) und (II) beträgt nach der Addition des jeweiligen Metalltrimethyls in cm⁻¹:

Verb.	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
$\Delta v(P=N)$	134	118	105	155	144	121

Die Veränderungen sind beim äthylsubstituierten Iminophosphoran (II) weit grösser als beim Methylhomologen (I). Dies spricht für die grössere Donatorstärke von (II) im Vergleich zu (I) und entspricht der Abstufung des positiven induktiven Effektes der Alkylgruppen: $C_2H_5 > CH_3$.

METALLALKYL-KOMPLEXE DER (STANNYLIMINO)PHOSPHORANE

Reaktionen

Die Addition von Trimethylaluminium, -gallium und -indium an [(Trimethylstannyl)imino]trimethylphosphoran (X) und sein *P*-Triäthyl-homologes (XI) bleibt nur unter sehr schonenden Bedingungen ($< -25^{\circ}$) auf der Stufe der Primäraddukte (XII) stehen. Unter Normalbedingungen schliesst sich vielmehr eine Sn-N-Spaltung an, die unter Abspaltung von Tetramethylstannan zu den [(Dimethylmetall)imino]trialkylphosphoran-Dimeren (XIII)-(XVIII) führt.

2 (CH ₃) ₃ M · O(C ₂ H ₅) ₂ $+$ 2 (CH ₃) ₃ Sn-N=PR ₃ (X), R = CH ₃ (XI), R = C ₂ H ₅	$\xrightarrow{-25^{\circ}}$ 2 (CH_3)	2 (C Sn(C N ₃M Pl (XII)	(2H ₅) ₂ O + CH ₃) ₃ R ₃	- 2(CH3)4Sn →→→→] 25°	CH ₃ R ₃ P=N CH ₃ (XIII)-	(XVIII)
	M R	(XIII) Al CH3	(XIV) Ga CH ₃	(XV) In CH₃	(XVI) Al C ₂ H ₅	(XVII) Ga C ₂ H ₅	(XVIII) In C ₂ H ₅

Die Zwischenstufen des Typs (XII) sind bei tiefen Temperaturen NMR-spektroskopisch nachweisbar. Sie wurden jedoch nicht isoliert. Die Vierring-dimeren (XIII)--(XV) sind im Prinzip bereits bekannt, waren bisher jedoch auf anderen Wegen erhalten worden^{3.7,8,16}. Diese Verbindungen, die als Isostere der Alumosiloxane einiges Interesse verdienen¹², sind nunmehr auf nicht weniger als 4 verschiedenen Wegen zugänglich.

Produkte

Die IR- und NMR-Spektren der Verbindungen (XVI)–(XVIII) sind bereits ausführlich diskutiert worden^{7,17}. In die Tabellen 6 und 7 sind deshalb nur die Daten von (XIII)–(XV) aufenommen worden.

Die IR-Spektren von (XIII)-(XV) sind wegen der hohen Symmetrie der Verbindungen relativ bandenarm, so dass die Zuordnung wiederum sehr erleichtert war.

~ • •

~ * *

Wegen der geringen Löslichkeit von (XIII)–(XV) in CCl_4 wurden zur genauen Bestimmung der Kopplungskonstanten und der Integralwerte auch ¹H-NMR-Spektren in CH_2Cl_2 vermessen.

Auf eine Besonderheit der Spektren sei kurz hingewiesen. Auf Grund weitreichender Kopplungsphänomene zwischen den beiden Phosphoratomen stellt das Signal der Trimethylphosphor-protonen kein einfaches Dublett, sondern ein X₉AA'X'₉-Multiplett dar. In der Tabelle 7 sind deshalb nicht die echten Kopplungskonstanten $J({}^{1}HC^{31}P)$, sondern nur "scheinbare" Kopplungskonstanten (virtual coupling constants) aufgeführt, deren Angabe sich in der Literatur eingebürgert hat (vgl. z.B. Ref. 18). Eine Berechnung der tatsächlichen Kopplungskonstanten $J({}^{1}HC$ -

TABELLE 6

(XIII)	(XIV)	(XV)	Zuordnung
1308 st	1305 st	1303 m	
1292 st	1290 st	1290 Sch	$\delta(CH_3P)$
		1286 st	
1215 m	1178 st	1146 m	$\delta(CH_{M})$
1172 st		1140 m	0(0113.01)
1122 sst	1138 sst	1111 sst	v(P=N)
	1090 sst		x - y
936 sst	932 st	932 st	$\rho_1(CH_3P)$
868 st	862 st	857 st	$\rho_{2}(CH_{2}P)$
856 st	849 st	847 st	P2(01-31)
743 st	740 st	733 m	$v_{as}(PC_3)$
732 st	723 st	722 m	$v_{s}(PC_{3})$
688 sst	702 st	672 st	$\rho_1(CH_3M)$
645 Sch	660 st	642 m	$\rho_{s}(CH_{3}M)$
655 sst	583 st	536 st	$v(M-N)_2$
566 s	539 st	481 st	»(MC-)
535 m	513 st	462 m	·(IVIC 2)
436 m			
418 Sch			

IR-daten der verbindungen (XIII)-(XV) (in cm⁻¹)

TABELLE 7

NMR-DATEN DER VERBINDUNGEN	(XIII)-(XV)"
----------------------------	-------	-------	----

Verb.	δ[CH ₃ (M)]	δ[CH ₃ (P)]	J(¹ HC ³¹ P) ^b	Integra	ulverhältnis ^e
				Ber.	Gef.
(XIII)	61.0 (67.0)	-84.0 (-85.0)	12.85	3/2	3/2.05
(XIV)	32.1 (40.5)	-83.7 (-81.0)	12.7	3/2	3/2
(XV)	24.5 (33.6)	83.6 (80.0)	12.55	3/2	3/1.98

^a In CH_2Cl_2 gegen externes TMS. Die chemischen Verschiebungen, gemessen in CCl_4 gegen internes TMS. sind in Klammern hinzugefügt. ^b Scheinbare Kopplungskonstante (A₂XX'A'₂) ^c Verhältnis der Fläche des Trimethylphosphor-dubletts zu der des Dimethylmetallsinguletts.

³¹P) nach Harris¹⁹ scheiterte an dem begrenzten Auflösungsvermögen des NMR-Spektrometers; sie dürften aber nur sehr geringfügig kleiner sein als die in der Tabelle 7 angegebenen scheinbaren Kopplungskonstanten.

BESCHREIBUNG DER VERSUCHE

Allgemeines

Die Versuche mussten unter Ausschluss von Luft und Feuchtigkeit durchgeführt werden. Lösungsmittel und Geräte waren dementsprechend vorgetrocknet und mit nachgetrocknetem Stickstoff geschützt.

Analysen. Die C-, H- und N-Werte entstammen Verbrennungsanalysen, die im hiesigen Institut durchgeführt wurden. Der Metallgehalt wurde nach Hydrolyse der Verbindungen komplexometrisch nach Schwarzenbach bestimmt. Die Molekulargewichtsbestimmungen wurden kryoskopisch in einer geschlossenen Beckmann-Apparatur in Benzol bestimmt.

Spektren. Die NMR-Spektren wurden mit einem Gerät Varian A 60 bei 60 MHz und 30-35° aufgenommen, wobei Tetrachlorkohlenstoff als Lösungsmittel und Tetramethylsilan als innerer Standard diente und die üblichen Fehlergrenzen gelten. Die chemischen Verschiebungen wurden in Hz gemessen. Negative Werte geben die Lage des Signals bei niedrigeren Feldstärken bezogen auf den Standard an.

IR-Spektren. Die IR-Spektren wurden in einem Perkin-Elmer Infracord, Mod. 337, aufgenommen. Festsubstanzen wurden mit Nujol verrieben, Flüssigkeiten in reiner Form in kapillarer Schichtdicke vermessen.

Ausgangsmaterialien. (I) bzw. (II) wurden aus Trimethylgermylazid und Trimethyl- bzw. Triäthylphosphin dargestellt²⁰. Trimethylgermylazid²¹ liess sich durch Umsetzung von Trimethylchlorgerman mit Natriumazid, Trimethyl- und Triäthylphosphin durch Grignardierung von Phosphortrichlorid erhalten. Die Darstellung von Trimethylaluminium-, -gallium-, und -indium-ätherat erfolgte durch Methylierung der Metallchloride oder -bromide mit Methyllithium, das seinerseits aus Chlormethan und Lithiummetall zugänglich war²². (X) und (XI) sind aus Trimethylchlorstannan und N-Lithium-iminotrimethyl (bzw. äthyl) phosphoran erhältlich²³.

Darstellung der Komplexe (III)–(VIII)

Die Synthese der Komplexe (III)-(VIII) erfolgte stets nach dem gleichen Prinzip, so dass hier in Verbindung mit Tabelle 6 eine allgemeine Arbeitsvorschrift genügt.

In einem kleinen Rundkolben wurde eine genau abgewogene Menge an (Germylimino)phosphoran vorgelegt und mit einem geringen Überschuss an Trimethylmetall-ätherat versetzt. Der Rundkolben wurde dann sofort an eine kleine Destillationsapparatur angeschlossen und der spontan gebildete Äther abdestilliert. Am Ende der Umsetzung wurde der Überschuss an Trimethylmetall-ätherat i.V. abgezogen. Das dabei auskristallisierende Rohprodukt fiel bereits in sehr reiner Form an. Eine weitere Reinigung liess sich durch Vakuumdestillation [für (III)-(V)] bzw. durch Vakuumsublimation [für (VI)-(VIII)] erzielen.

Darstellung der Verbindungen (XIII)-(XVIII)

In einem kleinen Rundkolben wurde [(Trimethylstannyl)imino]trimethyl-

phosphoran bzw. -triäthylphosphoran genau eingewogen und das jeweilige Trimethylmetall-ätherat in geringem Überschuss langsam zugetropft. Der freigesetzte Äther, das entstandene Tetramethylstannan und das überschüssige Trimethylmetall-

TABELLE 8

ANSĀTZE UND AUSBEUTEN BEI DER DARSTELLUNG VON (III)-(VIII)

R ₃ P=N-	-Ge(CH₃)3	M(C	$(H_3)_3 \cdot x$	$O(C_2H_5)_2^a$	Produk	tausbeut	e	
R	(g)	(mMol)	M	(g)	(mMol)	Nr.	(g)	(mMol)	(%d.Th.)
CH ₃	2.48	11.9	AI	2.15	14.7	(III)	2.98	10.6	89
CH ₃	2.14	10.3	Ga	3.05	15.0	ÌΝ	2.85	8.3	86
CH	1.93	9.3	In	3.10	14.1	(V)	3.18	8.65	93
C ₂ H ₃	3.90	15.6	Al	2.50	17.1	(VÍ)	4.32	13.4	86
C,H,	3.14	12.6	Ga	2.65	13.0	(VII)	4.38	12.0	95
C₂H₅	2.55	10.2	In	2.80	12.8	(VIII)	3.82	9.3	92

^a x = 1.0 für AI; 1.2 für Ga und 0.8 für In.

TABELLE 9

ANSÄTZE ZUR DARSTELLUNG VON (XIII)-(XVIII)

R ₃ P=N-Sn(CH ₃) ₃			$(CH_3)_3 M \cdot xO(C_2H_5)_2^a$			Reaktionsprodukt			
R	(g)	(mMol)	M	(g)	(mMol)	Nr.	(g)	(mMol)	(%d.Th.)
CH ₃	0.83	0.77	Al	0.66	0.45	(XIII)	0.59	0.2	61
CH ₃	4.55	17.9	Ga	3.66	18.0	(XIV)	2.92	7.7	86
CH ₃	4.08	16.1	In	3.75	17.7	(xv)	2.82	6.0	75
C ₂ H ₅	2.86	9.7	Al	1.86	12.7	(XVI)	1.74	4.6	95
C ₂ H ₅	2.79	9.4	Ga	1.95	9.6	(XVII)	1.79	3.9	82
C₂H ₅	2.16	7.3	In	2.0	9.4	(XVIIÍ)	1.98	3.6	98

" x = 1.0 für Al; 1.2 für Ga und 0.7 für In.

TABELLE 10

ANALYSEN UND MOLEKULARGEWICHT DER VERBINDUNGEN (III)-(VIII), (XIV) UND (XV)"

Verb.	C (%)		н (%)	Н (%)		N (%)		Metall (%)		MolGew.	
	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	
(III)					5.01	5.31	9.64	9.77	254.6	280	
(IV)	33.51	32.94	8.44	8.26	4.34	4.31	21.61	21.75	315.8	323	
(v)	29.40	28.83	7.40	7.18	3.81	3.76	31.22	31.04	358.5	368	
(ví)	44.77	43.63	10.33	10.23	4.35	4.21	8.38	8.43	313.3	322	
(vii)	39.52	39.29	9.12	9.04	3.84	3.81	19.12	19.18	351.8	356	
ÌVIII)	35.17	35.03	8.12	8.05	3.42	3.37	28.02	28.09	401.1	410	
(XIV)	31.63	32.76	7.96	8.20	7.38	7.61	36.73	36.53	379.8	377	
xv)ŕ	25.56	25.91	6.43	6.50	5.96	6.12	48.86	49.24	470.0	478	

^a (I), (II), (X), (XI), (XIII) und (XVI)-(XVIII) wurden bereits früher analysiert^{1,2,7,20,23}. ^b Schmp. 107–108°, Subl. 100–105°/0.2 mm. ^c Schmp. 110–112°, Sdp. 118–120°/0.2 mm.

ätherat wurden dann an der Ölpumpe abgezogen und die verbleibenden [(Dialkylmetall)imino]triorganophosphorane anschliessend sublimiert [(XIII) und (XIV)] oder destilliert [(XV)-(XVIII)]. Die einzelnen Ansätze und Ausbeuten sind aus der Tabelle 9 ersichtlich.

Werden Ansätze für (XIII) und (XVI) bei -25° durchgeführt, so zeigt das Reaktionsgemisch NMR-Signale, die den Addukten vom Typ (XII) zuzuordnen sind. Beim Aufwärmen werden sie in die Resonanzen von (CH₃)₄Sn und (XIII) bzw. (XVI) umgewandelt.

DANK

Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung und der Deutschen Forschungsgemeinschaft für das zur Verfügung gestellte NMR-Spektrometer.

LITERATUR

- 1 H. SCHMIDBAUR UND W. WOLFSBERGER, Chem. Ber., 100 (1967) 1000.
- 2 H. SCHMIDBAUR UND W. WOLFSBERGER, Chem. Ber., 100 (1967) 1016; J. Organometal. Chem., 16 (1968) 188.
- 3 H. SCHMIDBAUR, W. WOLFSBERGER UND H. KRÖNER, Chem. Ber., 100 (1967) 1023.
- 4 J. C. BALDWIN, M. F. LAPPERT, J. B. PEDLEY UND J. A. TREVERTON, J. Chem. Soc., A, (1967) 1980.
- 5 K. JONES UND M. F. LAPPERT, Organometal. Chem. Rev., 1 (1966) 67.
- 6 M. F. LAPPERT, Vortrag auf der GOCh-Sitzung in Würzburg am 12. Jan. 1968.
- 7 H. SCHMIDBAUR UND G. JONAS, Chem. Ber., 101 (1968) 1271.
- 8 W. WOLFSBERGER, Dissertation, Univ. Würzburg, 1968.
- 9 R. L. MERKER UND M. J. SCOTT, J. Organometal. Chem., 4 (1965) 98.
- 10 O. SCHERER UND M. SCHMIDT, Angew. Chem., 75 (1963) 642; Angew. Chem. Int. Ed. Engl., 2 (1963) 478.
- 11 H. SCHMIDBAUR, J. Amer. Chem. Soc., 85 (1963) 2336.
- 12 H. SCHMIDBAUR, Allg. Prakt. Chem. (Wien), 18 (1967) 138; Fortschr. Chem. Forsch., im Druck.
- 13 F. SCHINDLER, H. SCHMIDBAUR UND G. JONAS, Angew. Chem., 77 (1965) 170; Angew. Chem. Int. Ed. Engl., 4 (1965) 153; Chem. Ber., 98 (1965) 3345.
- 14 W. STROHMEIER UND K. H. HÜMPFNER, Ber. Bunsenges. Phys. Chem., 61 (1957) 1010.
- 15 H. SCHMIDBAUR, K. SCHWIRTEN UND H. H. PICKEL, Chem. Ber., 102 (1969) 564.
- 16 H. SCHMIDBAUR, G. KUHR UND U. KRÜGER, Angew. Chem., 77 (1965) 866; Angew. Chem. Int. Ed. Engl., 4 (1965) 877.
- 17 G. JONAS, Dissertation, Universität Marburg/Lahn, 1967.
- 18 A. PIDCOCK, Chem. Commun., (1968) 92; J. M. JENKINS UND B. L. SHAW, J. Chem. Soc., A, (1966) 770.
- 19 R. K. HARRIS, Can. J. Chem., 42 (1964) 2275.
- 20 H. SCHMIDBAUR UND W. WOLFSBERGER, Chem. Ber., 101 (1968) 1664.
- 21 I. RUIDISCH UND M. SCHMIDT, J. Organometal. Chem., 1 (1964) 493.
- 22 I. RUIDISCH UND M. SCHMIDT, Z. Anorg. Allg. Chem., 311 (1961) 331.
- 23 H. SCHMIDBAUR UND G. JONAS, Chem. Ber., 100 (1967) 1120.